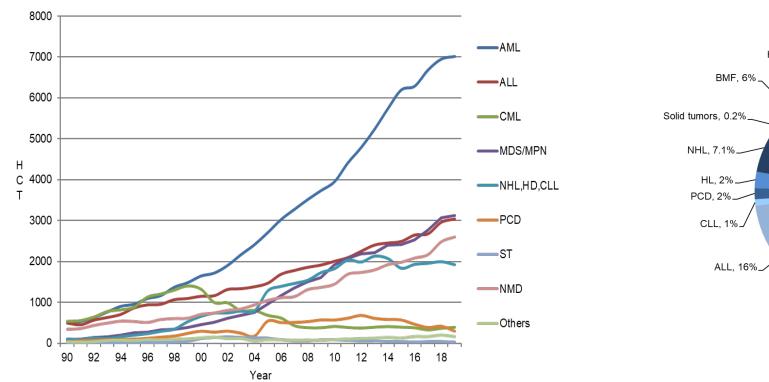


MA CHI È GUARITO - nella LAM - HA DI SOLITO FATTO L'ALLOTRAPIANTO?

RENATO FANIN

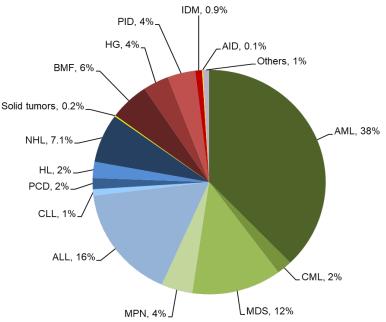
Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other

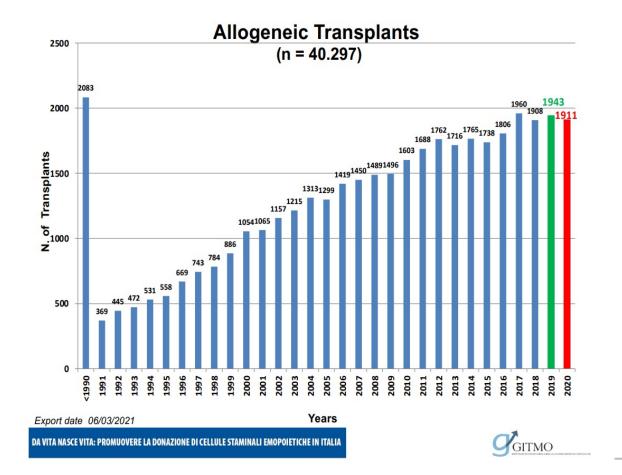

NONE

AGENDA

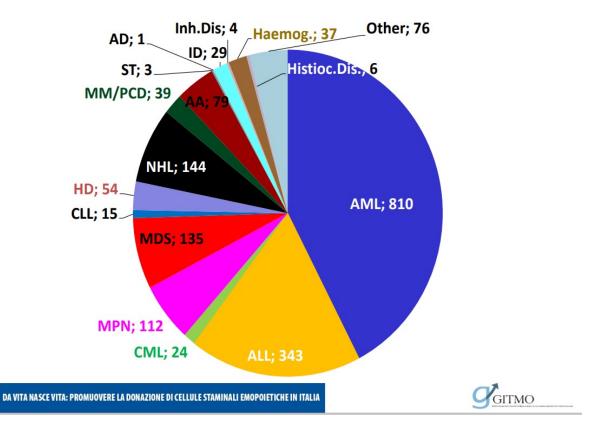
- 1) I numeri del Trapianto Allogenico nei Registri, nelle LAM
- 2) Indicazioni al trapianto nelle LAM nel 2021
- 3) Miglioramento della performance dell' Allo-SCT
- 4) Le LAM che possono guarire senza il trapianto allogenico


ЕВМТ

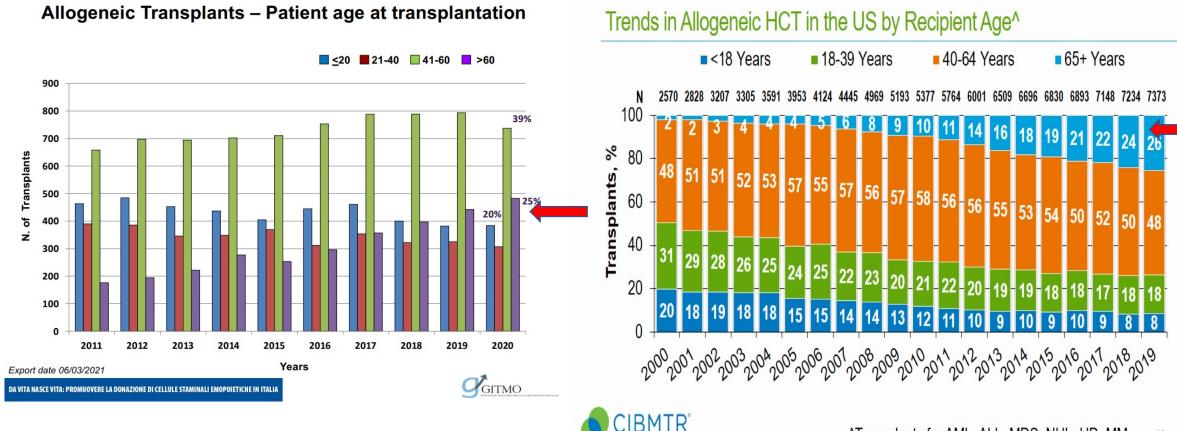
HCT activity in Europe 1990-2019: main indication - allogeneic


ЕВМТ

Allogeneic HCT in Europe 2019: 1st HCT

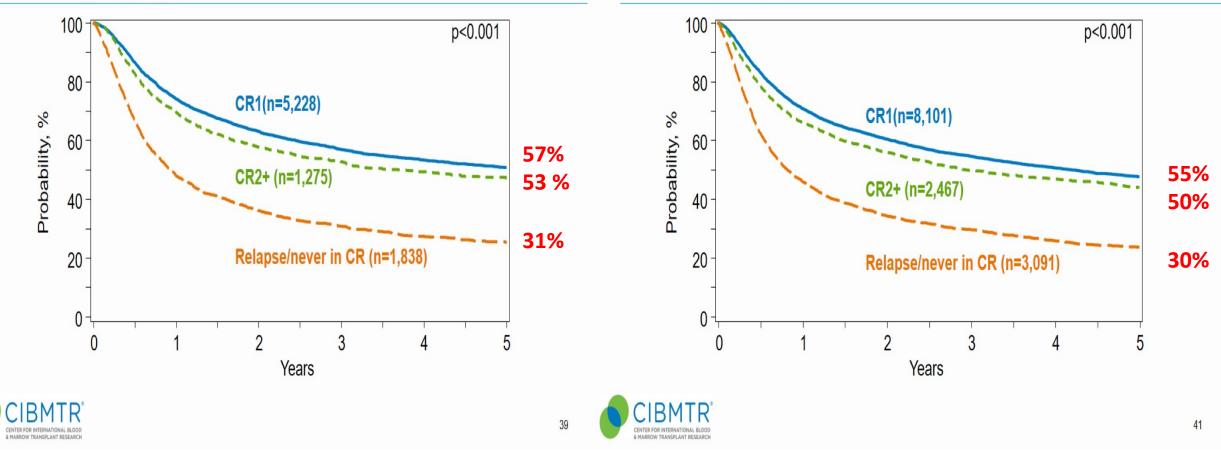


Passweg et al. Bone Marrow Transplant. 2021 Jul;56(7):1651-1664


GITMO SURVEY 2020

Allogeneic Transplants - Indications 2020

ALLOGENEIC TRANSPLANT BY RECIPIENT AGE



CENTER FOR INTERNATIONAL BLOOP

[^]Transplants for AML, ALL, MDS, NHL, HD, MM ¹⁴

OUTCOME OF HEMOPOIETIC STEM CELL TRANSPLANT IN US SURVEY 2020

Survival after Matched Related Donor HCT for Acute Myelogenous Leukemia (AML), Age ≥18 Years, in the US, 2008-2018 Survival after Unrelated Donor HCT for Acute Myelogenous Leukemia (AML), Age ≥18 Years, in the US, 2008-2018

gular Article

CLINICAL TRIALS AND OBSERVATIONS

GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia

Adriano Venditti,¹² Alfonso Piciocchi,³ Anna Candoni,⁴ Lorella Melillo,⁵ Valeria Calafiore,⁶ Roberto Cairoli,⁷ Paolo de Fabritiis,⁸ Gabriella Storti,⁹ Prassede Salutari,¹⁰ Francesco Lanza,¹¹ Giovanni Martinelli,^{12,13} Mario Luppi,¹⁴ Patrizio Mazza,¹⁵ Maria Paola Martelli,¹⁶ Antonio Cuneo,¹⁷ Francesco Albano,¹⁸ Francesco Fabbiano,¹⁹ Agostino Tafuri,²⁰ Anna Chierichini,²¹ Alessia Tieghi,²² Nicola Stefano Fracchiolla,²³ Debora Capelli,²⁴ Robin Foà,²⁵ Caterina Alati,²⁶ Edoardo La Sala,³ Paola Fazi,³ Marco Vignetti,³ Luca Maurillo,² Francesco Buccisano,^{1,2} Maria Ilaria Del Principe,^{1,2} Maria Irno-Consalvo,¹ Tiziana Ottone,¹ Serena Lavorgna,¹ Maria Teresa Voso,^{1,2} Francesco Lo-Coco,^{1,2} William Arcese,^{1,2} and Sergio Amadori³

			Ν°ΤΜΟ	%
N° Pz.	Trial	500	130	26
N° Pz.	in R.C.	361	130	36
N° Pz.	candidati Allo	188	130	69

- 361 of 500 patients (72%) achieved a complete remission,
- 342/361 completed the consolidation phase and were treatment allocated: 165 (48%) to AlloSCT (122 PR, 43 IR MRD-positive) plus 23 rescued after salvage therapy, for a total of 188 candidates; 150 (44%) to AuSCT (115 FR, 35 IR MRD-negative) plus 27 IR patients (8%) with no leukemiaassociated phenotype, for a total of 177 candidates.
- Overall, 110/177 (62%) and 130/188 (71%) AuSCT or AlloSCT candidates received it, respectively.

Nuove diagnosi di AML vs Numero di Trapianti allogenici

- Nuovi casi attesi in Italia /anno/ 100.000 abitanti : 3500 (AIRTUM 2015 malattie rare ematologiche), età mediana 68 anni, % low risk 32% (ELN 2017)
- Numero di trapianti allogenici 800 procedure/anno Survey GITMO 2020 (procedure > 65 anni 25%)
- Età < 68 anni : N°nuove dx/y 1750 meno LR = 1190 casi

N°TMO eseguiti 600 (75% di 800), pari al 50% delle indicazioni

- Età > 68 anni : N°nuove dx/y 1750 meno LR = 1190 Pz > 75 a (circa 50%)= 600 casi
 N°TMO eseguiti 200 (25% di 800), pari al 30% delle indicazioni
- Transplant rate inferiore all'atteso per numerose variabili correlate non solo al paziente...
- Le percentuali del TMO allogenico nei trails non rispecchiano la real life
- Ulteriore e forte indicazione ad inserire i Pz. in studi clinici

AGENDA

- 1) I numeri del Trapianto Allogenico nei Registri, nelle LAM
- 2) Indicazioni al trapianto nelle LAM nel 2021
- 3) Miglioramento della performance dell' Allo-SCT
- 4) Le LAM che possono guarire senza il trapianto allogenico

Indications

Allotransplant is the most effective therapy able to reduce the relapse risk but its overall benefit is limited by the NRM and QoL

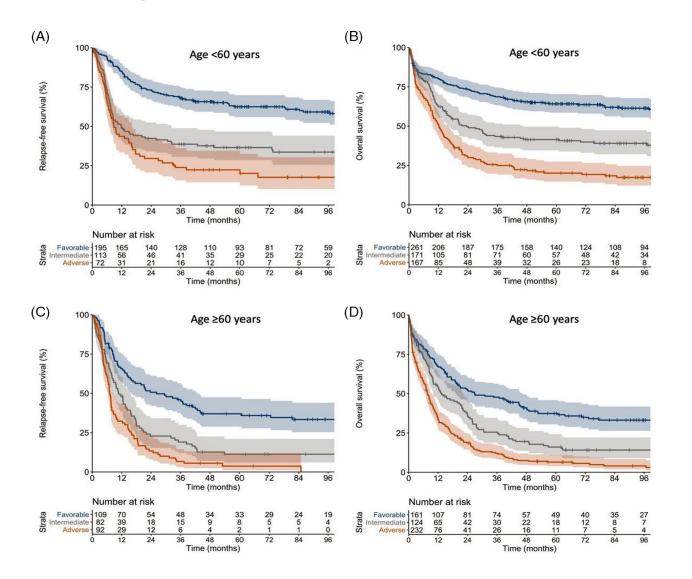
Reduction of relapse is independent of the genetic risk

A seminal metanalysis demonstrated that the overall benefit from allo regards adverse and intermediate genetic risk pts

°Yanada Cancer 2005

*Cornelissen Blood 2007

Koreth JAMA 2009



WHO (in CR1- fit to chemo-)

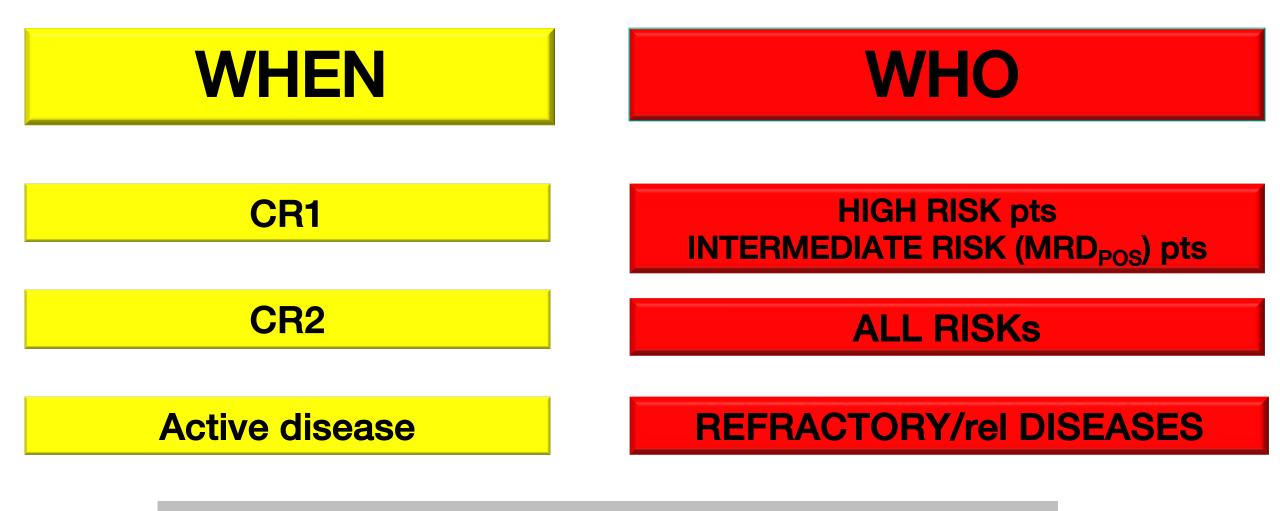
GENETIC TRANSPLANT **MRD** Consider **RISK** FACTORS Table 5. 2017 ELN risk stratification by genetics Genetic abnormality **Risk category*** t(8;21)(g22;g22.1); RUNX1-RUNX1T1 Favorable inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 Mutated NPM1 without FLT3-ITD or with FLT3-ITD bw + **Biallelic mutated CEBPA** Mutated NPM1 and FLT3-ITDhight Intermediate Wild-type NPM1 without FLT3-ITD or with FLT3-ITD^{low}† (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3); MLLT3-KMT2A‡ Cytogenetic abnormalities not classified as favorable or adverse Adverse t(6;9)(p23;q34.1); DEK-NUP214 t(v;11q23.3); KMT2A rearranged t(9;22)(q34.1;q11.2); BCR-ABL1 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM(EVI1) -5 or del(5q); -7; -17/abn(17p) Complex karyotype,§ monosomal karyotypell Wild-type NPM1 and FLT3-ITDhight Mutated RUNX1¶ Mutated ASXL19 Dohner Blood 2017 Mutated TP53#

Acute myeloid leukemia: 2021 update on risk-stratification and management

	5 yrs OS –ELN 2017 risk group		
	Age < 60	Age <u>></u> 60	
LOW Risk	64%	37%	
INT Risk	42%	16%	
HIGH Risk	20%	6%	

American Journal of Hematology, Volume: 95, Issue: 11, Pages: 1368-1398, First published: 24 August 2020, DOI: (10.1002/ajh.25975)

The role of allogeneic stem cell transplantation in the management of acute myeloid leukaemia: a triumph of hope and experience

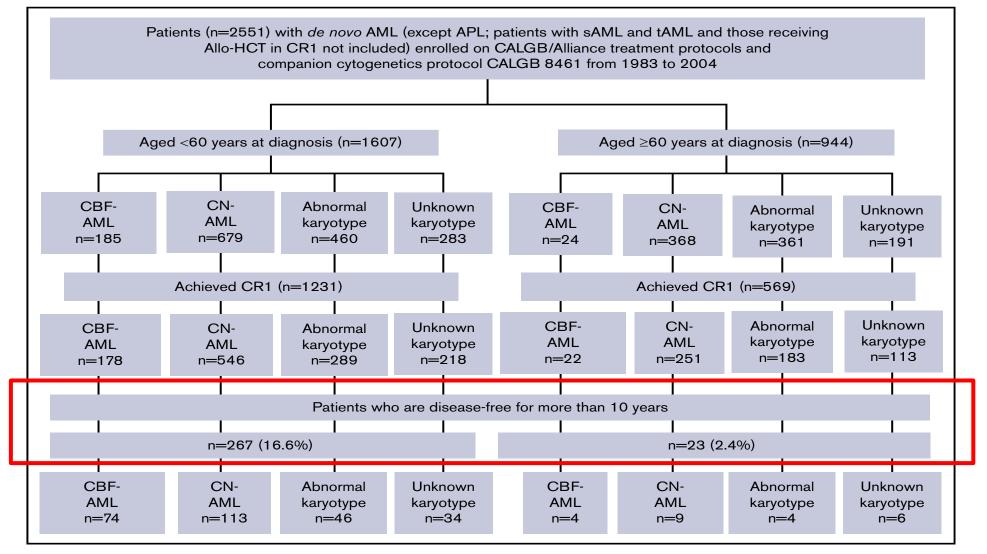

British Journal of Haematology, 2020

Justin Loke,^{1,2} Ram Malladi,^{1,2} Paul Moss^{1,2} and Charles Craddock^{1,2} (D

¹Centre for Clinical Haematology, Queen Elizabeth Hospital and ²University of Birmingham, Birmingham, UK

2017 ELN Risk	MRD after cycle 2	Estimated risk of relapse, based on consolidation with:		Maximal tolerated NRM prognostic scores for allo-SCT to be beneficial	
stratifications by genetics	chemotherapy	Chemotherapy alone (%)	Allo-SCT (%)	HCT-CI score	NRM risk (%)
Favourable	Negative	25–35	15-20	N/A (<1)	5
	Positive	70-80	30-40	≤3–4	<30
Intermediate	Negative	50-60	25-30	≤2	<20
	Positive	70-80	30-40	≤3–4	<30
Adverse	N/A	>90	45–55	<5	<35

Selection of patients with acute myeloid leukaemia in first complete remission for allogeneic stem cell transplantation (allo-SCT), based on relapse risk (Döhner et al., <u>2017</u>; Schuurhuis et al., <u>2018</u>) and estimate of non-relapse mortality (NRM) (Sorror et al., <u>2014</u>), adapted from Cornelissen and Blaise (<u>2016</u>).

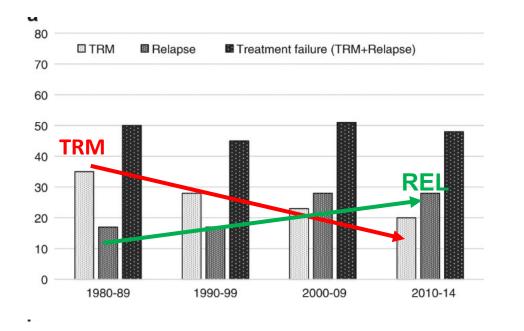


Intermediate MRD neg risk pts in CR1?

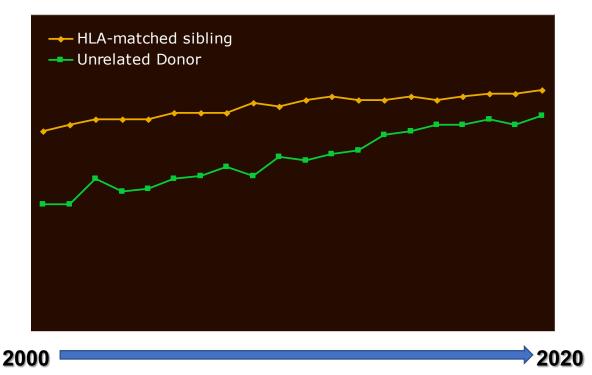
Favourable risk pts in CR2?

Koreth JAMA 2009; Dohner Blood 2017

Ten-year outcome of patients with acute myeloid leukemia not treated with allogeneic transplantation in first complete remission. Vaso S. et al. Blood Advances, 2018


Figure 1. Overview of AML patients enrolled on the CALGB 8461 cytogenetic study and receiving chemotherapy-based treatment on successive CALGB trials. Abnormal karyotype indicates other abnormal karyotypes (excluding CBF-AML); unknown karyotype (due to inadequate mitoses). APL, acute promyelocytic leukemia; CALGB, Cancer and Leukemia Group B; CBF, core-binding factor; CN, cytogenetically normal; sAML, secondary AML; tAML, therapy-related AML.

AGENDA


- 1) I numeri del Trapianto Allogenico nei Registri, nelle LAM
- 2) Indicazioni al trapianto nelle LAM nel 2021
- 3) Miglioramento della performance dell' Allo-SCT
- 4) Le LAM che possono guarire senza il trapianto allogenico

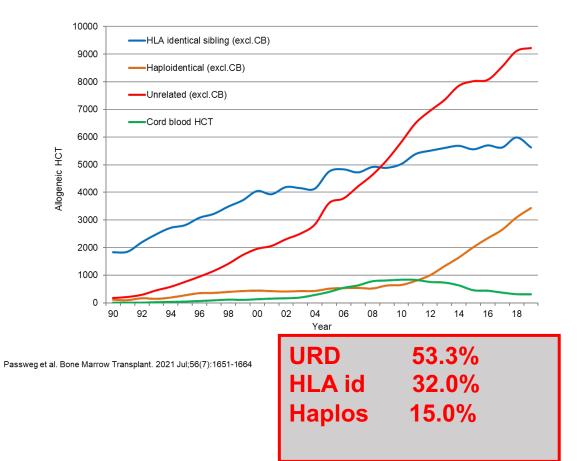
TRENDS IN ALLOGENEIC TRANSPLANT

ACUTE MYELOID LEUKEMIA – 1CR – MAC TRANSPLANT

One-year OS after MAC conditioning for AML any phase

COME MIGLIORARE L'EFFICACIA E RIDURRE LA TOSSICITÀ DEL TRAPIANTO ALLOGENICO

- TRM/NRM (HCT-CI, mEBMT SCORE, ADT...)
- SELEZIONE DEL DONOR *
- REGIMI DI CONDIZIONAMENTO
- MRD*
- PROFILASSI DELLA GVHD
- FOLLOW UP POST ALLO


DONOR TYPE

CONVENTIONAL EBMT ALGORITHM FOR DONOR SELECTION ON THE BASIS OF HLA IN ADULT PATIENTS WITH HEMATOLOGICAL MALINGNANCY

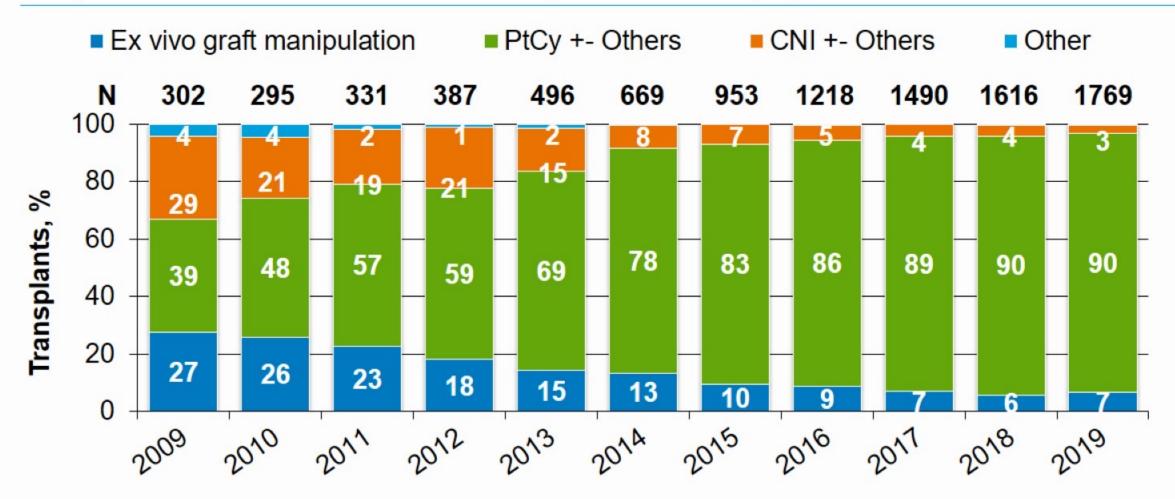
- 1. HLA IDENTICAL SIBLING 0-30%
- 2. UNRELATED DONOR (MATCHED OR MISMATCHED) 40-60%
- 3. ALTERNATIVE DONOR (CORD BLOOD OR HAPLOIDENTICAL) 10-30%

Allogeneic Transplant by donor type

EBMT HCT activity in Europe 1990-2019: donor origin: 1st HCT

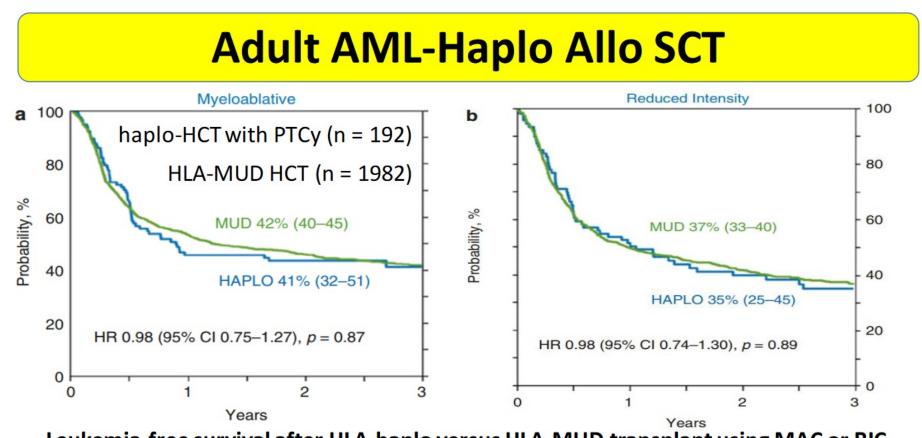
Fam.Mismatch/Aplo Fam.Match Ident.Sib Unrelated 877 45,9% 34,2% Transplants 19,7% of ż

Years


DA VITA NASCE VITA: PROMUOVERE LA DONAZIONE DI CELLULE STAMINALI EMOPOIETICHE IN ITALI/

Export date 06/03/2021

GITMO


Allogeneic Transplants – Donor type

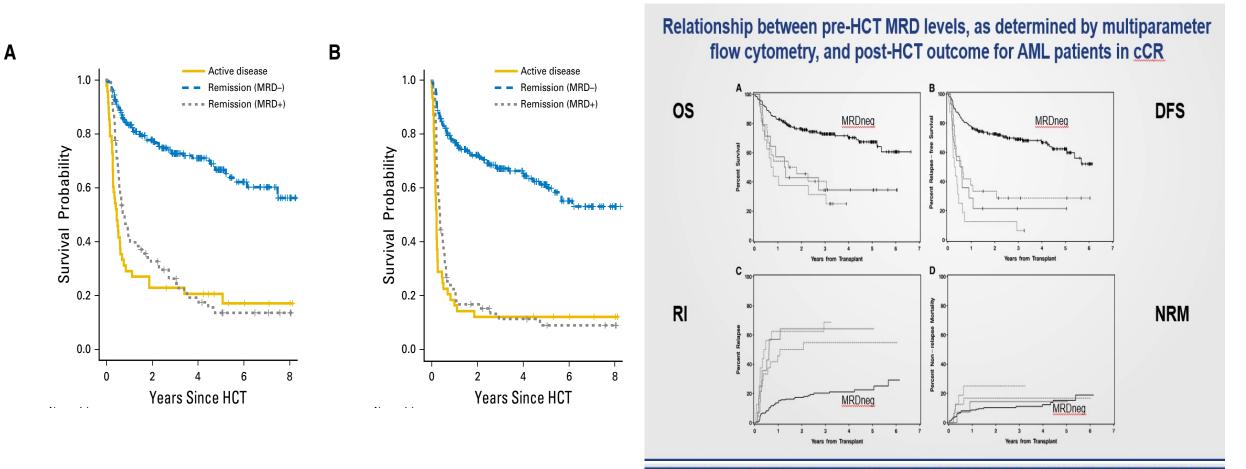
Haploidentical HCT in the US by GVHD Prophylaxis

Abbreviations - PtCy: Post-transplant cyclophosphamide; CNI: calcineurin inhibitor

Leukemia-free survival after HLA-haplo versus HLA-MUD transplant using MAC or RIC

Protocol: Bu/Cy (MAC) + Unmanipulated BM + PTCy + CSA + MMF

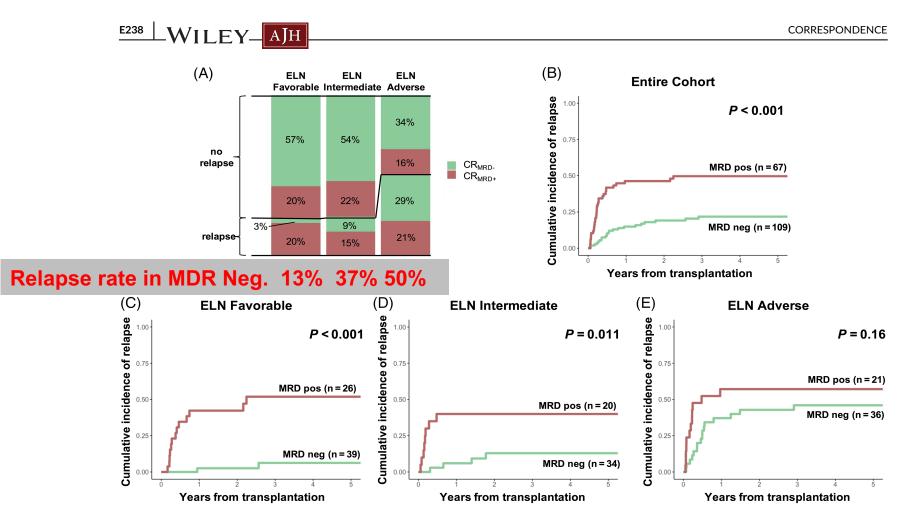
CIBMTR Retrospective analysis


Ciurea SO, Zhang MJ, Bacigalupo AA, Bashey A, Appelbaum FR, Aljitawi OS, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–40.

Clinical results: T-repleted Haplo vs MUD

- 1. Hematological recovery slower in haplo than MUD, even if PBSC are used.
- 1. Higher graft rejection rate in haplo than in matched MUD, related to anti DSA Ab.
- 2. Similar rate of acute GvHD, lower rate of chronic GVHD in haplo vs MUD, expecially if only patients receiving PBSC were considered
- Although results of randomized trials are not available (ongoing phase 3 NCT02623309 in pts aged 55-70 years without HLA identical sibling), outcome Haplo is not inferior to mismatched MUD and similar to matched MUD in most studies.
- 5. Choice of donor should be also based on urgency of transplant, experience of the center and non HLA donor factors.

MEASURABLE RESIDUAL DISEASE


IMPACT OF PRETANSPLANT MDR+ FLOW TEST ON TRASPLANT OUTCOME

Walter, RB et al.: Blood. 2013;122(10):1813-1821

ARAKJ D. ET AL. JCO 2016,329

Clinical value of the measurable residual disease status within the ELN2017 risk groups in AML patients undergoing allogeneic stem cell transplantation

FIGURE 1 Patient outcome according to MRD status and ELN2017 risk. A Percentage of patients suffering relapse according to MRD status within the different ELN2017 risk groups. B Cumulative incidence of relapse for all patients according to MRD status at HSCT and C for the ELN2017 favorable group, D for the ELN2017 intermediate group and E for the ELN2017 adverse group

Experimental Hematology

Experimental Hematology 2017;49:25-33

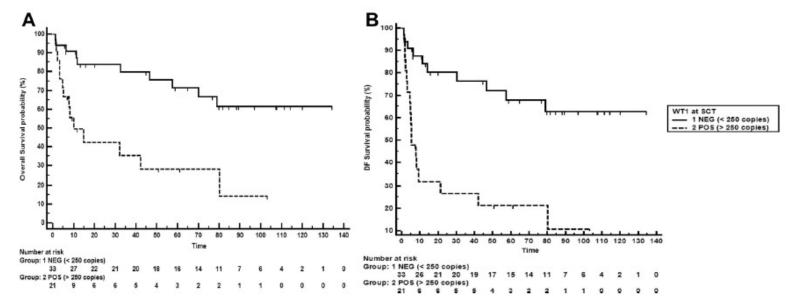
Predictive value of pretransplantation molecular minimal residual disease assessment by WT1 gene expression in FLT3-positive acute myeloid leukemia

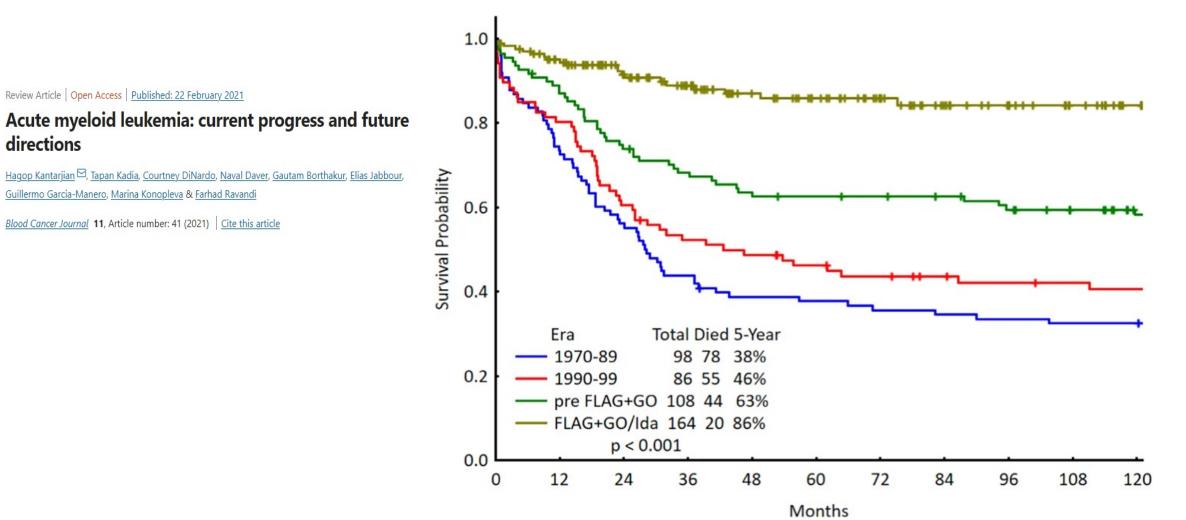
Anna Candoni, Federico De Marchi, Francesca Zanini, Maria Elena Zannier, Erica Simeone, Eleonora Toffoletti, Alexsia Chiarvesio, Michela Cerno, Carla Filì, Francesca Patriarca, and Renato Fanin

Division of Hematology and Stem Cell Transplantation, Azienda Sanitaria Universitaria Integrata di Udine, University of Udine, Udine UD, Italy (Received 4 October 2016; revised 8 December 2016; accepted 22 January 2017)

A. Candoni et al./ Experimental Hematology 2017;49:25-33

29




Figure 2. (A) OS and (B) DFS after allo-SCT according to WT1 levels before allo-SCT (WT1-negative vs WT1-positive). For (A), WT1-negative patients, median OS was not reached; for WT1-positive patients, median OS = 10.2 months (log-rank p = 0.0005, HR = 3.7, 95% CI = 1.5–9). For (B), WT1-negative patients, median DFS was not reached; for WT1-positive patients, median DFS = 5.5 months (log-rank p = 0.0001, HR = 4.38, 95% CI = 1.9–10); for WT1-negative patients, 5-year probability of OS and DFS: 70% and 67%, respectively.

AGENDA

- 1) I numeri del Trapianto Allogenico nei Registri, nelle LAM
- 2) Indicazioni al trapianto nelle LAM nel 2021
- 3) Miglioramento della performance dell' Allo-SCT
- 4) Le LAM che possono guarire senza il trapianto allogenico

LAM a RISCHIO FAVOREVOLE

Survival of core-binding factor acute myeloid leukemia at MD Anderson (1970–2020)

Research Article | 🙃 Free Access

192 patients (median age 44) treated with curative intent in 11 Italian hematology institutions from 1987 to 2012

1.00 RS 0.75 Survival Probability 0.50 n = 22 0.25 n = 38 second-line therapy without HSCT P = .0448 second-line allogeneic HSC1 Ö 50 100 150 200 250 months 1.00 second-line therapy without HSCT RM — second-line allogeneic HSCT Cumulative Incidence Function n = 38 0.75 22 Ö n = 22 0.25 0.00 P < .001

Complex karyotype, older age, and reduced first-line dose intensity determine poor survival in core binding factor acute myeloid leukemia patients with long-term follow-up

Federico Mosna, Cristina Papayannidis, Giovanni Martinelli 🔀, Eros Di Bona, Angela Bonalumi, Cristina Tecchio, Anna Candoni, Debora Capelli, Andrea Piccin, Fabio Forghieri, Catia Bigazzi, Giuseppe Visani, Renato Zambello, Lucia Zanatta, Francesca Volpato, Stefania Paolini, Nicoletta Testoni, Filippo Gherlinzoni , Michele Gottardi, ... See fewer authors <

First published: 06 March 2015 | https://doi.org/10.1002/ajh.24000 | Citations: 43

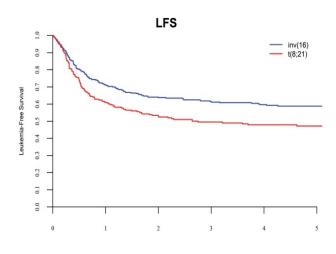
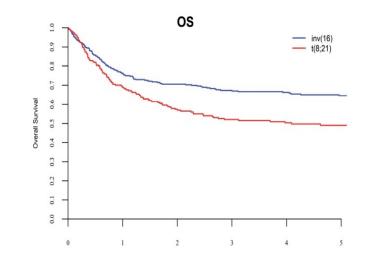
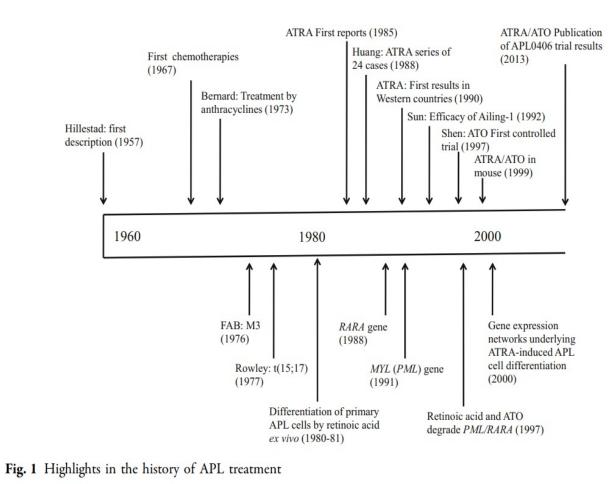

AML t(8;21) (n = 80) AML inv(16) (n = 112) 10-year OS 63.9%

TABLE III. Univariate and Multivariate Proportional Hazard Modeling for Potential Factors Impacting Overall Survival


	Univariate analysis		Multivariate analysis	
	RR (95% CI)	Р	RR (95% CI)	Р
Age >60 years	3.05 (1.69-5.51)	< 0.001	4.52 (2.24-9.12)	< 0.00
Secondary AML	2.30 (0.98-5.39)	0.056		
//ale	0.98 (0.58-1.66)	0.95		
Splenomegaly	1.02 (0.50-2.08)	0.96		
lepatomegaly	1.13 (0.62-2.07)	0.69		
≥2 lymph nodes	0.41 (0.15-1.13)	0.084		
Extramedullary disease	1.44 (0.68-3.04)	0.50		
Granulocytic sarcoma	1.50 (0.47-4.80)	0.50		
VBC $>$ 30 \times 10 ³ /mm ³	1.07 (0.62-1.84)	0.81		
Platelets $\leq 20 \times 10^3$ /mm ³	2.24 (1.29-3.91)	0.004	1.99 (1.08–3.66)	0.027
Elevated LDH	3.60 (1.12-11.57)	0.032	3.52 (1.07-11.60)	0.038
DIC	0.70 (0.33-1.48)	0.35		
nv(16) vs t(8;21)	0.75 (0.45-1.26)	0.28		
23 additional cytogenetic abnormalities	2.58 (1.02-6.49)	0.044	1.47 (0.48-4.48)	0.50
Presence of subclones	1.15 (0.66-1.98)	0.63		
Nutated KIT	2.33 (0.61-8.8)	0.21		
Nutated FLT3	0.95 (0.28-3.17)	0.93		
acked marrow	1.37 (0.79–2.38)	0.26		
ailure to achieve CR1 after induction therapy	6.21 (2.92-13.22)	< 0.001	5.43 (2.33-12.68)	< 0.0

RUOLO ALLO-SCT in 2 RC/CBF

Time from transplant (years)

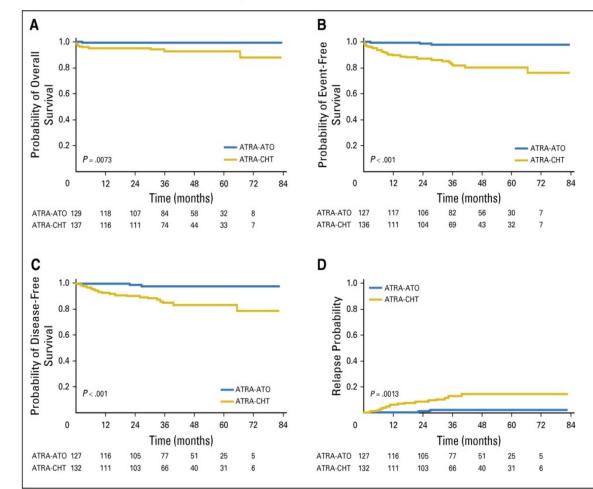


Time from transplant (years)

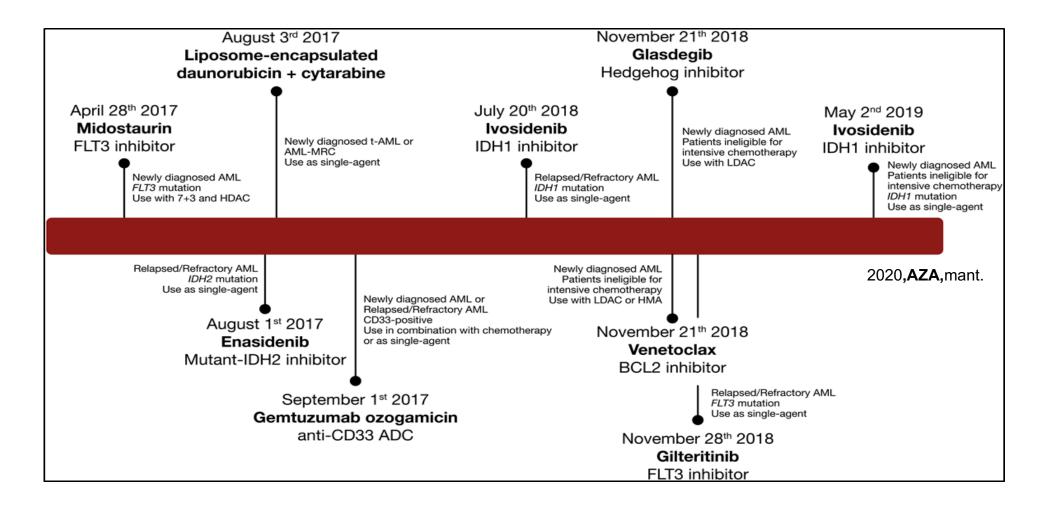
REVIEW

Acute Promyelocytic Leukemia: A History over 60 Years—From the Most Malignant to the most Curable Form of Acute Leukemia

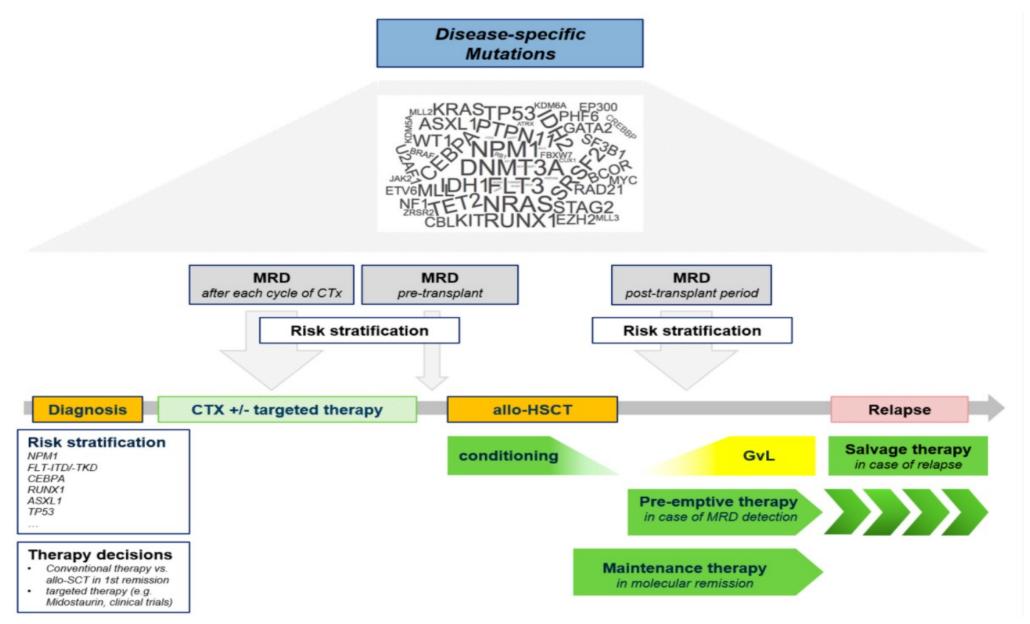
Xavier Thomas



JOURNAL OF CLINICAL ONCOLOGY

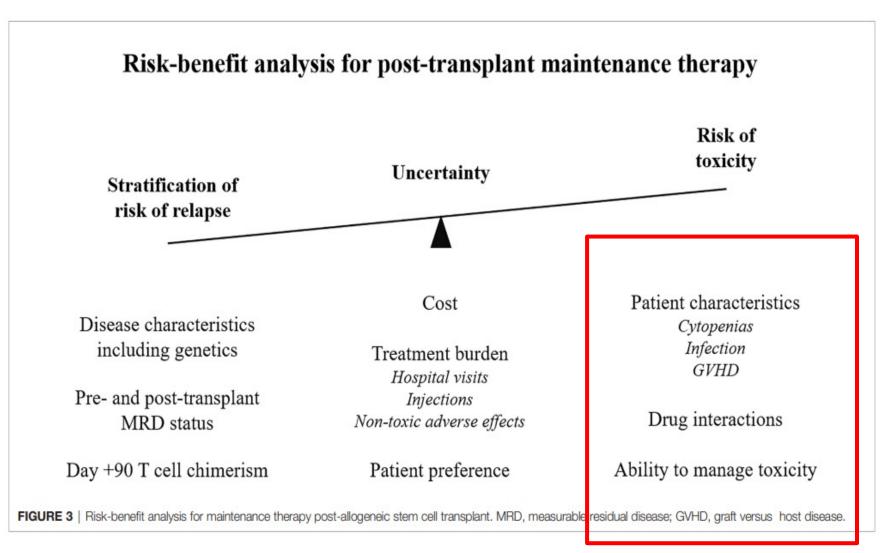

ORIGINAL REPORT

Improved Outcomes With Retinoic Acid and Arsenic Trioxide Compared With Retinoic Acid and Chemotherapy in Non–High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial


Uwe Platzbecker, Giuseppe Avvisati, Laura Cicconi, Christian Thiede, Francesca Paoloni, Marco Vignetti, Felicetto Ferrara, Mariadomenica Divona, Francesco Albano, Fabio Efficace, Paola Fazi, Marco Sborgia, Eros Di Bona, Massimo Breccia, Erika Borlenghi, Roberto Cairoli, Alessandro Rambaldi, Lorella Melillo, Giorgio La Nasa, Walter Fiedler, Peter Brossart, Bernd Hertenstein, Helmut R. Salih, Mohammed Wattad, Michael Lübbert, Christian H. Brandts, Mathias Hänel, Christoph Röllig, Norbert Schmitz, Hartmut Link, Chiara Frairia, Enrico Maria Pogliani,† Claudio Fozza, Alfonso Maria D'Arco, Nicola Di Renzo, Agostino Cortelezzi, Francesco Fabbiano, Konstanze Döhner, Arnold Ganser, Hartmut Döhner, Sergio Amadori, Franco Mandelli, Gerhard Ehninger, Richard F. Schlenk, and Francesco Lo-Coco

Did new drugs changed the way to transplant ???

POST-ALLO MAINTENANCE THERAPY



POST-ALLO FLT3 INIBITORI

ТКІ	FLT3 Targets	Maintenace post AlloHCT Studies Active or Completed	Reference for Results Available
Midostaurin	FLT3-ITD FLT3-TKD	NCT01883362 (RADIUS)	Thomas R, et al. <i>Blood</i> . 2018;132 (Suppl1): Abstr 662. http://www.bloodjournal.org/content/132/Suppl_1/6 62. Accessed Jan 25, 2019.
Sorafenib	FLT3-ITD	NCT01398501 (SORMAIN)	Burchet A, et al. <i>Blood.</i> 2018;132 (Suppl1): Abstr 661. <u>http://www.bloodjournal.org/content/132/Suppl_1/5</u> <u>63</u> . Accessed Jan 25, 2019.
Gilteritinib	FLT3-ITD FLT3-TKD	NCT02997202	Recruiting; no results available
Quizartinib	FLT3-ITD	NCT02039726 (QUANTUM-R)	Cortes JE, et al. <i>Blood</i> . 2018;132 (Suppl1): Abstr 563. http://www.bloodjournal.org/content/132/Suppl_1/5 63. Accessed Jan 25, 2019.
Crenolanib	FLT3-ITD FLT3-TKD	NCT02400255*	Safety results: Oran B, et al. <i>Blood.</i> 2018;132 (Suppl1): Abstr 3426. <u>http://www.bloodjournal.org/content/132/Suppl_1/3</u> <u>426</u> . Accessed Jan 25, 2019.

POST-ALLO MAINTENANCE THERAPY

Strategies to Improve Transplant Outcome in AML

Frontiers in Immunology, 2021

POST-ALLO DEMETILANTI

Check for

Transplantation and Cellular Therapy

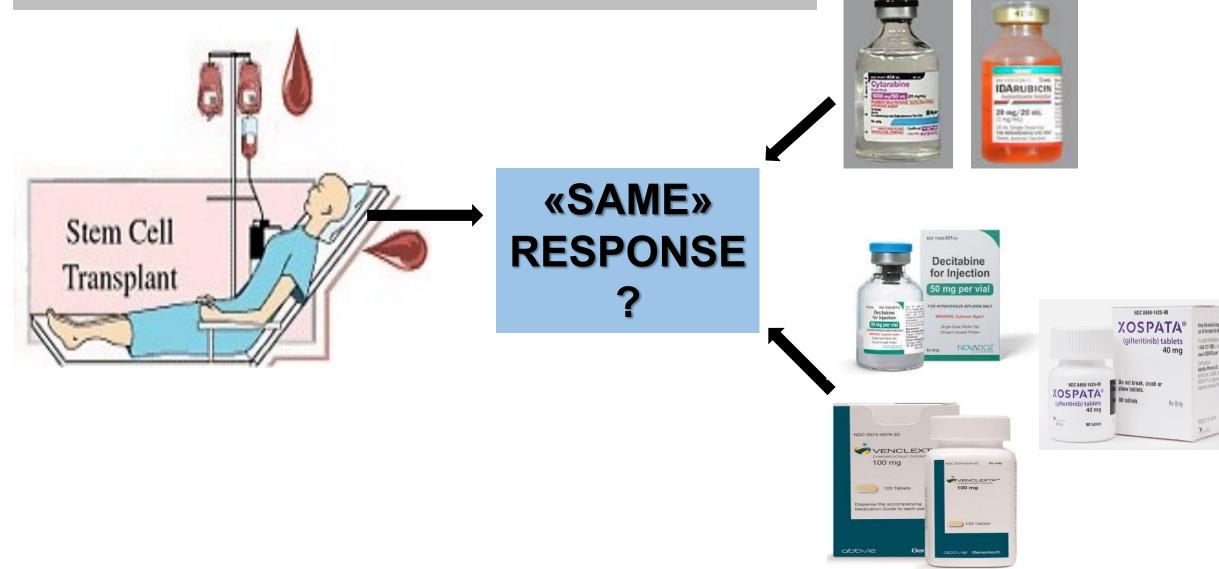
journal homepage: www.tctjournal.org

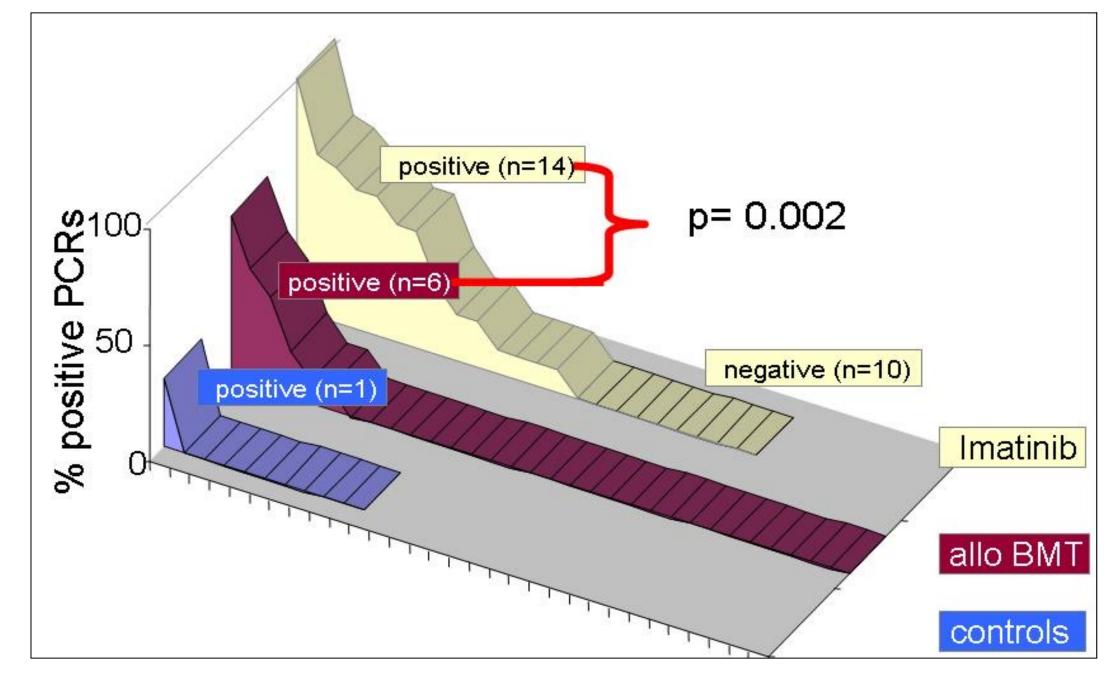
American Society for Transplantation and Cellular Therapy

Full Length Article Cellular Therapy

Prophylactic or Preemptive Low-Dose Azacitidine and Donor Lymphocyte Infusion to Prevent Disease Relapse following Allogeneic Transplantation in Patients with High-Risk Acute Myelogenous Leukemia or Myelodysplastic Syndrome

Thierry Guillaume^{1,2,*}, Sylvain Thépot^{2,3}, Pierre Peterlin^{1,2}, Patrice Ceballos⁴, Amandine Le Bourgeois^{1,2}, Alice Garnier^{1,2}, Corentin Orvain^{2,3}, Aurélien Giltat^{2,3}, Sylvie François^{2,3}, Yannick Le Bris^{2,5}, Clémentine Fronteau⁶, Lucie Planche⁷, Patrice Chevallier^{1,2}


¹ Department of Hematology, Nantes University Hospital, Hôtel-Dieu, Nantes, France
 ² Fédération Hospitalo-Universitaire Grand-Ouest Acute Leukemia, Nantes-Angers, France
 ³ Department of Hematology, Angers University Hospital, Angers, France
 ⁴ Department of Hematology, Montpellier University Hospital, Saint-Eloi Hospital, Montpellier, France
 ⁵ Hematologic Biology Department, Nantes University Hospital, Hôtel-Dieu, Nantes, France
 ⁶ Department of Pharmacy, Nantes University Hospital, Hôtel-Dieu, Nantes, France
 ⁷ Clinical Research Unit, Regional Hospital of Vendée, Les Oudairies, La Roche-Sur-Yon, France


Volume 27, Issue 10, October 2021

Highlights

- Patients with high-risk <u>acute myelogenous leukemia</u> (AML) and myelodysplastic syndrome (MDS) may benefit from maintenance therapy after <u>allogeneic hematopoietic stem cell</u> <u>transplantation</u>.
- Prophylactic/preemptive low-dose <u>azacitidine</u> and <u>donor</u> <u>lymphocyte infusion</u> can be readily and safely administered with an acceptable incidence of subsequent graft-versus-host disease in patients with AML and MDS.
- The incidence of disease relapse was decreased in these patients, with increased overall survival compared with historical controls.

THE «DEPTH OF RESPONSE» ISSUE

Lange T. & Deininger M., NEJM 2003

TAKE HOME MESSAGGE

Numero dei trapianti eseguiti inferiore all'atteso, ma ruolo ALLO ancora irrinunciabile

Indicazione all'ALLO da ELN e MRD ma «grey zones»

Nuovi farmaci: impatto della diversificazione dell'induzione sulla percentuale e durata della risposta (3/7+GO, 3/7 + FLT3-I, CPX, Demet, Demet + Veneto)

L'applicazione del concetto della MRD nelle acute mieloidi è recente, non siamo ancora in grado di dire quali pazienti MRD negativi non ricadranno (a parte APL)

Sustained MRD neg. post allo \rightarrow guarigione Sustained MRD post target therapy ???

Il concetto della piattaforma allogenica

Il miglioramento della profilassi della GVHD e del Survival dovrebbero ridurre l'attrito verso l'allo: LA RICADUTA POST TMO RIMANE TUTTORA LA PRINCIPALE CAUSA DI MORTE

CLINICA EMATOLOGICA e CENTRO TRAPIANTI Presidio Osp. S. Maria della Misericordia, PAD.15 UDINE

FE

Ringraziamenti Anna Candoni Francesca Patriarca Francesca Bonifazi Alessandra Sperotto